
t ,• 1D - I 'T D l -R -h • h!

Y OF -,

HA;1 *

Technical Note 1965-13

J. A. Feldman

Aspects
of

Associative Processing

21 April 1965

Prepare~d und-r F IP tronic Svstems Division C ontract AV 19(628)-10)O by

Lincoln Laboratory
M4VS.I(III 'Frl'S !%~iS1 I TS T 1i TOF (IHIOI OC'

Lexington. Ma,4sa huetts

Best- Available Copy

AM MAY 1 0 1965

~DOC-iRA E

S MA:!; S('HC E.TTS INSTITUTE OF TE('IINOLOGI

LINCOLN LABORATORY

ASPECTS OF ASSOCIATIVE PROCESSING

J. A. FELDMAN

Group 23

TECHNICAL NOTE 1965-13

21 APRIL 1%5

L E XI N T TON ki AS S A C H US SET T S

ASPECTS OF ASSOCIATTVE PROCESSING

ABSTRACT

Several aspects of information processing on a computer with an

associative memory are discussed. The first section describes a source

language for use with such an associative processor. An efficient way of

simulating an associative processor on conventional computers is the topic

of the second section. The conclusion contains a discussion of the under-

lying assumptions as well as several suggested applications. The applications

to artificial intelligence and natural language processing indicate the

f greatest promise.

S• Accepted for the Air Force
Stanley J. Wisniewski
Lt Colonel, USAF
Chief, Lincoln Laboratory Office

iii

TABLE OF COONTENTS

PAGE

ABSTRACT iii

I. A PROGRIJ4(ING 1ANGUAGE FCR ASSOCIATIVE PROCESSIG 1

II. A SIMUTIAED ASSOCIATIVE MEMRY 13

III. APPLICATICOS AND EXTEIS 29

APPENDIX A SANPLE RUN OF THE ASSOCIATIVE PROCESSOR 39

APPENDIX B BACKUE NORMAL FORM SYNTAX OF THE ASSOCIATIVE 41
LANGUAGE

BIBLIOGRAPHY 43

DETACHABLE PAGE (APPENDIX A) 45

V

I. A PROGRAKM]G IANGUAGE FCJR ASSOCIATIVE PROCESSING

An associative processor is any computer or computer program which

performs the functions of the mythical associative memory. After a brief dis-

cussion of the essential featurcs. u• the associative memory, we will consider

several aspects of non-numeric information processing with such a device.

The first topic will be an intermediate level, programming language

designed for use with an associative processor. In the second section we

describe a program for the TX-2 at Lincoln Laboratory which is an efficient

associative processor. The final section contains a discussion of possible

applications of associative processing as well as a critical discussion of

the first two sections. It is here that we will distinguish arbitrary design

decisions from those we believe to be significant.

The distinguishing feature of an associative memory is that is has

no explicit addresses. Any reference to information stored in an associative

memory is made by specifying the contents of a part of a cell. All cells in

the memory which meet the specification are referred to by the statement. A

standard coordinate-addressed memory can be thought of as a special case in

the following way: Each cell of the associative memory will be a pair

consisting of a conventional cell and its address:

associative cell address 1 conventional cell

To access a cell in this special asscciative memory, one specifies the

contents of one particular part (the address field) of a cell. In the general

associative memory a cell can be accessed by specifying the contents of any

part of the cell.

The following example may help point out the importance of this

seemingly minor difference. Suppose one were to store the contents of a

telephone directory in a computer memory. There are several ways in which

one could organize the data so that the telephone number of a given person

could be found fairly quickly. However, the problem of going from a telephone

number to its owner is rather difficult. One could, of course, enter a second

directory ordered by numbers rather than naiies, t;t IV Z r.... resent.

the same information twice in the memory. The e are several other possibili-

ties; all of these lead to compromises between inefficiency in time and

inefficiency in storage. In an associative memory either question could be

answered in one memory access and without any redundant information being

stored in the memory.

This example is so clear and striking that it should be suspect.

First of all, it is often the case that one person has several telephone

numbers or that several people are listed for the same number. This is the

so-called multiple-hit situation and is at the root of most of the problems

encountered in using associative memories. Welwill return to this question

repeatedly in the sequel.

To illustrate the consequences of this and other difficulties

we will need a more comprehensive example. For this purpose suppose the

telephone book is expanded to an Orwellian directory containing the name,

address, telephone number, social security number, and family ties of each

entry. The problems inherent in representing this directory are qualitatively

different from those in the simple example.

When there were only two objects, a name and number, the representati

2

in the associative •iemory was straightforward. Tho obvious extension of this

technique to the larger problem would lead to a memory with words wide enough

to contain the five pieces of information. One difficulty with this scheme

is that it is very wasteful. For example, a grocery store can be expected

to have an address and telephone number, but no social security number or

family ties. By using a different field for each attribute we guarantee

that a large part of the memory will always be wasted.

A more serious problem arises in attempting to represent family

ties. There is no reasonable fixed word size which will be large enough to

represent the family relationships of the person with the most ties. Further,

the representation of a family tie requires two pieces of information: a

person's naume and his relation, to the original person. All of these diffi-

culties are inherent in the problem and characterize the type of information

structure with which this paper is concerned.

Thus, we are dealing with problems where there are a large number

of objects of different kinds (people, businesses). Each of these objects

will have certain attributes (address, family ties). We assume that there

are no general rules for deciding which attributes apply to a particular kind

of object. For example, the attribute ISOCIAL SECURITY =7NUMR" applies to

most, but not all, people. Each attribute which applies to a given object

will have a set of values. To represent such an association we will use the

notation:

1) Attribute(Object) = Value

3

The notation above can be motivated by considering the attribute at

a function which has objects as its arguments and produces values. In this

scheme a representAtion of the large directory might contain triples like:

ADDRESS(John Doe) = 201 Main

PHCHE(John Doe) = 862-3926

SON(John Doe = Don Doe

WIFE(John Doe) = Donna Doe

Notice that we have used the attributes SON and WIFE rather

than the original form FAMILY which would have led to:

FAMILY(John Doe) = Don Doe, son

FAMILY(John Doe) = Donna Doe, wife

This rearranging of information to correspond to the triples of the basic

t form (1) will reoccur frequently below.

The remainder of this section will be devoted to a discussion of a

programming language for use with an associative memory. The presentation

Iitself will not depend on the implementation chosen for this associativeI

memory. The language is currently running on an associative memory simulated

on the TX-2 at Lincoln Laboratory.

The essential feature of any associative processor is the facility

for implicitly specifying operands. One can use constructs like SCR(John Doe

directly in statements. This ability becomes very powerful when nesting to

I4

arbitrary depth is also perritted. We will, for example, allow operands

which express:

"the telephone number of the son of the man whorje

brother lives with Mary's Aunt".

This construction is already fairly difficult to express in

English and there are some constructs which are practIcally inexpressible.

The essential difficulty is that natural language does not have sufficient

ability to name intermediate results. This is accomplished in formal

mathematical systems through the use of variables. WE will make extensive

use of the properties of free and bound variables to help express complex

associations.

All operand specifications will be based on the form (1) which

we abbreviate:

2) A(O) = V

The basic operands are formed by replacing one or two of the

symbols in (2) by variables, usually W, X, Y, or Z. Although the variants

of the form (2) may entail complex processes, they are syntatically operands

for greater programming ease. For example, SON(John Doe) = X represents the

set of all sons of John Doe. This is the most common case but is only one

of the six possibilities.

Fl) A(O) = X

F2) A(X) = V

F3) X(o) = V (cont)

5

P4) A(X) - z

F5) X(Z) V

6) x(o)= z

There is, in addition, the case FO where all the positions are

specified. This operand form is just a test for the occurrence of the fully-

specified association in the memory. These seven forms correspond to the

basic searches available in a three-field associative memory; the symbol F

may be thought of as mnxemonic for FIND. In terms of the relationship between

John and Don Doe these operands are:

NAM ASSOCIATION MEANING

Fl SON(John Doe) = X Sons of John Doe

12 SON(X) = Don Doe Father of Don Doe

F3 X(John Doe) = Don Doe Relation of John to Don Doe

F4 SON(X) = Z All father-son pairs

F5 X(Z) = Don Doe All Associations with Don as
Value

F6 X(John Doe) = Z All Associations with John as
Object

FO SON(John Doe) = Don Doe The association itself, if true

The programming language described here will be based rather

strongly on the properties of the operands FO F6, which will be treated

as primitives. These are actually implemented by generators [15] in the

simulated system described in the next section. The language presented here,

however, will not depend on any particuls- implementation of the primitives.

This is somewhat of a departure from the previous work in this area.

6

The existing literature on programming an associative processor is

mainly concerned with special applications and is at the machine language

level. Without questioning the value of this work, one can assert that the

wide-spread acceptance of associative memories will depend on the.ir use in

general-purpose machinec and with appropriate problem-oriented languages.

Further, in developing such high-order languages, we may provide valuable

information to the designers of hardware associative processors.

It will be important to keep in mind that the associative language

(AL) described here is meant to be compiled. There will, of necessity, be

large run-time subroutines, but the advantage over an interpreter-oriented

language still seems significant. The language will make no explicit use of

the considerable parallel processing ability available in some of the pro-

posed associative mLmories. Finally, the larguage is strongly oriented towards

applications in artifical intelligence and my not be '-ell suited to other

areas.

Besides the operands FO F6, there will be three basic opera-

tions in the associative language. These operations, SET, TYPE, and ERASE,

correspond to the primitive functions WRITE, READ, and DEIET of a non-

destructive read-out memory. To illustrate their use we will refer to the

example in Appendix A. Listed there is an actual run of the TX-2 associative

processor dealing with the information in a simple picture. A copy of

Appendix A is at the back of the paper and my be detached.

In the example of Appendix A a number of special conventiorns are

followed. All attribute names end with a period ".". The only variables used

will be W, X, Y, and Z for objects and values and W., X., Y., and Z. for

attributes. The lines beginning with circled numerals are comments and all

of the program's responses are indented.

The first four lines of Appendix A contain commands putting some

inittal information into the memory. The operation SET requires a form with

all positions fixed (FO). Upon execution the SET command places the specified

association in memory if it is not already there. Thus, the first line of

the example records that CIRC and S01 are both to the left of TRI. The

statement RUN causes the compiled code to be executed and the translator to

be reinitialized. Appendix B contains a Backus Normal Form approximation

to the syntax of the associative language, AL.

Notice that only some of the positional relationships among

objects in the picture have been placed in memory. In the course of the run

various AL statements are used to expand the information. For now, however,

our goals are more modest.

The statement G) of Appendix A is an encoding of the question

"How are SQ2 and CTRC related?". The AL statement

TYPE W.(S -) w cIRC, w.(cmc) = SQ2, RUN

carriks out this operation. The function TYPE can accept as its operand any

of the forms FO F6; it causes all the specified associations to be typed.

The syntax of ERASE is exactly like that of TYPE. An example of its use can

be found on line () where the LINE is completely removed from the picture.

The basic operations my be combined in various ways using

sequencing statements. The most elementary type is the simple FOR statement:

FC(< form > < statement sequence > END

8

The AL statement 0 is an instance of a simple FOR statement. We

viii consider it in some detail because it points out the use of bound variables.

The statement is:

FC ABOE - (cInc) - X TYPE LEFT * (x) - ChIC EN, RUN

The form in this statement is of type Fl and specifies all objects above the

circle. Since the variable X occurs within the scope of FOR, it is bound

until the matohing END. Thus, the operand of TYPE has all positions fixed

(FO) and is a test for the occurrenc- of the fixed association in memory.

The control flow of this statement models closely the generators

of IPL-V [5]. All figures which are above the circle are found. Each

figure which is so generated is tested to see if it is also to the right of

the circle. If so it is printed and, in either cr control returns to the

generator for another figure to be tested. This c,. cespondence between bound

variables and generators was independently utilized in the DACXON effort and

is discussed in [1.].

A more complicated FOR statement can be found in Q of Appendix

A. This statement expands the memory to explicitly include results of the

transitivity of ABOVE. By replacing the SET in Q with ERASE one could

construct a statement which would contract the memory on transitivity.

Statements such as these allow an AL user to dynamically trade space for time

as problem needs dictate.

Another expansion of the memory is accomplished by the statements

in example G . This example is .ntivated by the fact that the LIME inherits

the positional properties of SQ2 which it is inside. The AL representation

9

uses two statements, one for associations with Sq2 as object and one with it

as value. A complication arises in the second of these statements which

necessitates the introduction of s ither kind of conditional clause.

In the second statement of G we are applying all associations

with SQ2 as object to LINE. The lifficulty is that one of these associations

is:

INsID • (sQ2) = LIM

and if the obvious course was followed, the statement Q would yield

fISID - (LINE) = LIM.

Under the assumption that INSID means properly inside, this is incorrect.

To avoid the undesirable result we have inserted the extra qualifier:

IF Y A Z

where A means "differs from". The nature of the IF clause is essentially

different from that of the other constructs described above.

The difference is that the expression "Y A Z" deals with objects

outside the context of the associative memory. Since a very limited number

of operations are available within the memory, there must be provisions for

dealing with associative entities in conventional ways. One important test

of any associative language is the ease with which it allows mixed r4atements

to be expressed.

In the current version of AL we have implemented a number of

arithmetic and relational constructs to indicate how this mightbe done. To

10

help illustrate the use of these constructs, we have extended the example in

Appendix A to include information about the areas of the figures.

The circle, triangle and squares are all given named axzas; the

area of the line is set to the constant 0. Then the named areas are assigned

values by statements like:

l ATRI.

This causes ATRI to be marked as having a numeric value as weln as assignirn

that value. The statement in example D illustrates the use of the numr'..c

values of associative operands. There is also in () a use of the operator

TYPOB which acts on an object, as opposed to TYPE which operates on an entire

association. An execution of TYPOB will type out the name of an object and

if it has a value, its value.

In example (D there is a combination of an associative and a

numerical test. As described in Appendix B these two types of test can be

nested arbitrarily in AL. There are also some primitive arithmetic expressions

in the language, but none appear in the examples.

The associative language, as described above, is not yet rich

enough to do much useful processing. There are two kinds of extensions

required: involved and trivial. The involved extensions require detailed

consideration and are best left until after the discussion of implementation

in the next skction. The trivial extensions are conceptually trivial but

require non-trivial amounts of work; these were not implemented because there

were neither people to do them nor user pressure to get them done. They will

be mentioned briefly here.

11

One of the most obvious extensions would be full arithmtic

capability. The language should certainly have control features such as

labels and transfer commands. The related concept of subroutines is also

needed, but falls among the involved examples to be discussed later.

The restriction to fixed name types for attributes and variables

could be overcome by incorporating ALGOL-like declarations. It would also

be possible to make the language easier to use by taking advantage of

intuitive preferences for the Form Fl. For example, one could allow

AREA * (ABOVE (TwR)) >AREA - (ml)

as a legal expression. We have not found a natural way to extend this

abbreviation to the other F forms.

Most of the extensions described here could be carried out by

imbedding AL in an existing programming language. After discussing our

g implementation of AL, we will consider the imbedding problem in some detail.

fi

12

II. A SIMULATED ASSOCIATIVE NEMORY

The associative addressing simulator for the TX-2 is a descendent

of the well-known scrambling or hash-coding schemes. The basic notion is

that objects be given internal names which correspond in some simple way to

their location in memory. Consider this example frequently found in compilers

for algebraic languages. An identifier in, say, ALGOL 60 is any string of

letters and digits starting with a letter. For the internal purposes of the

compiler it is required only that the identifiers be mutually distinguishable.

By assigning a unique low integer to each identifier, the compiler writer

derives several advantages.

If the reserved words of the language are chosen to be the first

n integers, a simple test for reserved words is available to the syntax

phase of the translator. More significant, from our point of view, is the

elimination of some table-lookup routines. One simply puts the external names

of variables in a sequential table starting at EXTNAME. Then when printing

a variable whose internal name is N the compiler accesses the contents of

EXTINME + N. Ono c-,n!d also use another table at PROPERTY for various properties

of the identifier.

Let us temporarily abandon this example and reconsider the nature

of an associative memory. For the present it is convenient to assume that

the data is arranged in three fixed fields in a word. The more general case

of associating on any set of bits will be considered later. The primary

feat':re of the memory is that all of its cells may be tested in parallel

for t.., occurrence of a particular pattern in one or more of the fields. This

is the accessing of data by its contents rather than by a particular address

13

and has given rise to the alternative name content-addressed memory (CAM)

for the associative memory.

The three fields in a word will be called the attribute, object

and value fields and the triplet itself called an association.

3) association attribute object value

This notation is identical with that of the first section and is also common

to several list-processing languages. This similarity of notation is not

accidental; the description lists of IPL were the first systematic attempts

to simulate an associative memory. The great usefulness of the description

(property) list concept as well as its limitations will be discussed below.

Tet up now reconsider the example of the compiler symbol tables.

Let each internal name be considered an object. Then for the attributes

EXTNAME and PROPERTY we have a convenient associative scheme for attaining

their value at any object. This use of memory corresponds to considering

a cell of conventional memory as an extended word of the form

1) cell Laddress- value

Under the further assumption that EXTNAME and PROPERTY have enough low-order

bits equal to zero we can rewrite the address as "attribute, object" obtaining

5) cell attribute Iobject value

in obvious parallel to (3).

It is useful to examine the restrictions inherent to this example.

There are only two attributes and each is applicable to every olject. Any

1

attribute applied to any object has one and only one value In addition, the

scheme is only efficient for asking the question AT'TRIBUE (OBJECT) = X. For

example, there is no direct way of obtaining the internal name of an identifier

from its external name. Many of these restrictions have been removed in

existing list-processing languages. The scheme used in IPL-V is typical.

In IPL-V the basic entity which corresponds to an object is the

list. Each list -ay have an attached description list which in turn is a

sequence of attribute-value pairs. To find the EXTNAW of an identifier I,

one would access the description list of the list named I. Then a sequential

search would be made for the attribute EXTNAME and the next cell on the list

taken to be the value. The value may itself be the name of a list and thus

multiple vnlues are permitted. This scheme is more general than that in the

compiler example, but still has serious drawbacks.

There is, in the dzscription list structure, no way of directly

answering inverse questions except by including the inverse of each association

explicitly. In addition, since the attributes m,-it be searched sequentially,

the time involved for large structures becomes prohibitive. Finally, there is

no provision at all for ascertaining the attribute linking a particular object-

vclue pair. Despite these weaknesses, description lists are among the most

useful features of the list processing languages. In fact, many of the roally

large programs in these languages rely heavily on esoteric uses of description

lists. Thiq accomplishment in the face of adversity has suggested a search

for better associative memory simulators.

In the compiler case we are able to get values quickly, but the

number of attributes was limited. In IPL-V there was an unlimited number of

15

""Tv *

attributes available, but answering the question A'TTRIBUTE (OBJECT) = X could

involve considerable sequential search. The attempt to overcome this dilemma

has given rise to the various scrambling and hash-coding schemes. The idea

is to apply a transformation to the internal names of ATTRIBUTE and OBJECT

which will yield the address of the appropriate value. Since this is

unattainable in practice, attempts were made to reduce the expected value of

the number of accesses to arrive at the value of a given association.

Although there has been much discussion of such techniques, very

little has been published in this area. We will describe briefly an unpublishe

paper by Newell [6] which is the most extensive treatment of the problem we

have seen.

In Newell's scheme associations will each occupy a cell of conven-

tional memory. Each attribute, object and value will be assigned a random

number of the same size as an address. To find a cell for A(O) = V, one adds

A and 0. Since it may be the case that A + 0 equals some A' + 0', each cell

must have a linked list of overflow cells. It is also assumed that associatior

are all single valued.

Under these assumptions it is easy to compute the expected nurber

of overflow cells as a function of the ratio of memory filled. Newell per-

forms this analysis and uses the results to compute the expected number of

accesses for the basic associative memory operations. His conclusions are

that the simulation loses a factor of two in speed and four-thirds in storage

over a hardware associative .memory of the same basic speed.

The scheme presented here is an extension in several directions

of Newell's simulator. In his scheme only the question A(O) X is directly

16

answerable and, further, it is constrained to have only one answer. The

attempt to generalize on these restrictions has led to the development of a

rather different simulator.

The particular memory structure chosen here was determined by a

nuw"-er of initial decisions, some of which are open to question. Among the

most critical was the choice of different logical types for attributes than

that chosen for objects and values.

At the beginning of the project a decision was made to have the

attributes be of a higher logical type (functions) than the objects and

values. Although this would not be true in a hardware associative memory,

it has proved to be useful. There have also been some difficulties which

will be discussed in section III. When there is no danger of conf'sion we

will refer to both objects and values by the generic name, object. Thus,

an association may be thought of as specifying n function from one object to

another.

A further point to notice is that there will always be fewer

objects ti.un there are cells of the associative store. This is because each

object must be involved in at least one association in order to be in the

store at all. Since, in addition, each associative cell will require more than

one memory word, the nJrL.ber of bits used in an object name can be less than

that in an address. Further, since attributes and objects appear in different

contexts, we can use the same name for one of each without confluson.

One can t-so arguie for dispensing with random numbers as internal

names. This is Jistified if the associations are themselves fairly random

with respect to the pairing zf attributes and objects. As we will see it

17

AW- - .6 -- *

would require some odd periodicities to violate this assumption for our schei

By assigning internal names sequentially we also gain some peripheral advantA

which will be discussed below.

Under these assumptions one can build a simple associative simula'

The TX-2 has a 36-bit word and we currently use the first 32,000 registers

as the associative store,. Using two words per association, this allows

roughly 16,000 associations. For general use it seems that a maximum of

4,000 objtcts (12 bits) is reasonable. Since there are presumably fewer

attributes, we use only 500 (9 bits) as the upper bound on attribute names.

Thus, the entire association can be packed into one machine word:

9 bits 3 12 12

attribute I tagr object value

The other word of the associative cell will be used for the

inevitable links. As everyone knows, tight packing leads to slow processing

and our system does suffer somewhat in speed from this effect. However, we

felt that naximumn utilization of core storage is one of the most important

requisites of an associative scheme.

The next step is the choosing of the Lransform used to compute

the address of an association. The only criteria that seem important here

are that the transforms:be •Ample and that it not be biased. A biased operat

is one, like logical AlD, that is more likely to produce zeros (or ones) as

a result, given random operands. We chose the unbiased operator EXCUSIVE C

(D), partial add) because it is its own inverse and this property might

prove to be useful someday. Finally, it will beI necEssary to skift one of

18

the operands so that the result is large enou-h to address memory. The shift

is chosen so that the result has enough bits to address the largest memory

anticipated and a mask is then used to address a smiler associative store

when desired.

In our scheme an attribute (9 bits) and an object (12 bits) are

transformed into an 18-bit number by shifting the attribute left nine places

and partial-adding the object name. The TX-2 has 9-bit byte commands so

this all comes off fairly smoothly. At present this 18-bit number is masked

to eliminate the three high-order bits and the lowest bit. The result is

the address of the even register of one of the association cells. For

example, if attribute 222 of object 6543 has as its value object 1234, the

following takes place: The numbers are all in octal form.

First 222000 () 6543 = 224543 is computed. This is nasked to

yield the address 24542, which we assime is unoccupied. The top of cell

24542 is filled in as follows:

24542 222 0 1-6543 1234

If the association cell is already full, various complications

arise. There are three different ways in which cell 24542 could have been

filled prior to this operation. First of all, if 222 of 6543 has another

value, this would automatically occupy the same cell. This situation,

called multiplicity, is the multiple-hit situation and is a problem in every

associative scheme, hardware or software. It is also possible that another

association, such as 220 or 4542, would yield the same cell 24542 under the

transform. This is called overlap and its statistics are a measure of the

19

performance of any simulated system. Finally, the cell 24542 my have been

used as a free-storage cell to handle the overlap or multiplicity of another

cell. This situation, conflict, will require moving the contents of 24542

to a new cell from free storage and is inordinately costly.

Because of the overlap and multiplicity problems, there must be

a provision for linking extra cells to the one produced by the transform.

This requires a free-storage list and a LINK position in every cell. The

form of an associative cell will then be:

association A t
LINK USE

where A, t, 0, V stand for attribute, tag, object, and value, respectively.

The half-word marked WEE holds a link in the linked list of all uses of an

object in the V position of a cell. It is this feature which makes it

feasible to answer inverse questions. The heads of the USE lists for the

individual objects are kept in a sequential table starting at VUSE.

The most important subroutines in the simulator are those which

inplement the operands FO F6. These arise from the replacement of zero,

one or two of the symbols in

A (O) =V

by variables. The resulting forms correspond to the stven possible operand

specifications in a three-field associative memory. The only other routines

needed to simulate a pure associative memory (no processing ability) are

SET, TYPE, and ERASE. Thus, to simulate an associati- i memory one need write

20

only a small number of fairly simple programs.

The work reported has proceeded along slightly different lines.

Our min interest in the simulated associative memory was as a vehicle for

the language described in the first section. For this reason the routines

used in the simulator are somewhat different than they would be for a simulated

pure memory. Therefore, it will only be possible to make rough estimatca of

the efficiency of the system as a memory. The rest of this section presents

a discussion of these routines, some performance figures, and some coments

on the efficacy of simulating associative memories.

The six operand specifications F1 F6 are each implemented by

two subroutines, one recursive and the other not. There is a degredation in

performance among them which corresponds to our estimates of their frequency

of use.

The routine F1 is used to retrieve operands of the form A * (0) -X,

the mst frequent form. The internal names of A and 0 are transformed into

an address as described above. If the addressed cell is not empty and not

used as a spare, its contents are tested for the occurrence of A in the

attribute portion. If it matches the cell is an answer and is output.

Multiple values will be in sequence on the linked list through the LIMK

section of the cell. If the attribute portion of the cell is not equal to A,

overlap has occurred in that cell. In this case the list through LINK is

searched for a cell with an attribute equal to A (Pouitive answer) or greater

than A (Negative answer). A flowchart of this routine is given in Chart 1

on page 22. Although this looks like a lot of processing, it actually is

quite fast as Table I will show. We will consider this flowchart in some

21

iN ,3-23-6149

ADORESS =(29 A 0) A (2"- 2)

C" • (ADES MPTY OR TAGD YES

POSITRESYE
POOITWC ATT RIBUTE R A F

AT:TRI2BUTE > A? NEGATIV
S~EXIT

NEXT GET NEXT CELL ON LINK LIST]

CHART 4

FLOWCHART OF THE ROUTINE F4

22

detail since much of the discussion will apply to all the F routinest

The routine Fl has two entrances and two exits. The initial call

is to the top of the flowchart and leaves a return address or mark. The

negative exit is to mark, and the positive exit to mark + 1. The second

entrance (Next in the flowchart) is used for successive values if these are

desired and present. The recursive version differs in that it saves several

things before leaving through the positive exit. All of these details are

common to the routines F1 F6 and none of them concern users of the

language described in the last section.

The routine F2 is used to generate answers for A • (X) = V.

The USE list of V is searched sequentially for the appearance of A in the

attribute section of a cell. The USE links are also in order of increasing

attribute numbers, so the loop in P2 is identical to that shown in the flow-

chart for Fl, except that the USE list is followed.

The other routine for a one variable search is F3; X • (0) = V.

This is implemented by searching the USE list of V for occurrences of 0 in

the object field. The occurrences of 0 are not ordered so this routine is

slower than Fl or F2.

The routines F4, F5, and F6 answer questions where two variables

are combined with one known entity. The routine F5 for X • (Y) - V is

particularly simple. Since each object has a list of all its uses as a

Value, P5 merely follows this list.

The most costly (and least likely) questions is A., A - (X) - Y.

This routine is a loop, applying F1 to every object in turn. There are

several ways of alleviating this situation if A4 turns out to be more

23

frequent than expected. The routine F6, X • (0) a Y is also a loop. This

one applies Fl in turn to every attribute in the system. Presumably• there

are far fewer attributes than objects so this is not as slow as F4.

The routine F0 is different in that it can have at most one

result. This case, A * (0) = V, has everything fixed and simply leaves by

the positive exit if the specified association is in the store. The seven F

routines implemert the READ function of an associative memory.

The routine to write an association (SET) operates on the form FO,

where all parameters are fixed. It uses the routine FP to find the proper

place in the memory for the association and to ascertain that it is not

already present. The routine Fl also provides the information needed to set

the LINK portion of the cell. The USE tie is placed appropriately by using

F2 to find the predecessor of the fiew association on the list at VUSE + V.

One difficulty in writing is that the cell found by Fl may have

been used as a spare. This is the conflict case and should be minimized.

For this reason the free storage list starts at the top of the memory, while

the L.ssociations build up from the bottom (because names are chosen sequential

This insures good performance of a mostly empty memory while allowing the use

of every cell when the memory is full. Actually, there is now a separate

area of 12,000 locations directly above the associative store which is used

first as free storage.

The ERASE routine can be used in connectio• with any of the

generators FO P6 in the recursive version. Both the LMIC and LEE lists

are circular (the last element points to the head element) so that the predec,

of the cell to be erased are available. The head of each list can be determil

214

from the top of the association cell, so only half the list must be searched

on the average. It would be more efficient to have seven different ERASE

routines, but this has not been done.

In Table 1 the minimum access times for the various routines

described above are listed. The times are minimal in the sense that each

routine could involve list searching in the worst case. The length of the

lists differs from case to case. Fbr F1 the length will be the number of

overlap cells with attr. < A. For PO the length will be that of F1 plus the

multiplicity of A. The length needed for P2 equals the number of uses of V

with attr. < A. The routine 73 has no ordering available and must search

the entire USE list of V regardless.

The routines FA and F6 are loops using F1 repeatedly. The length

of the loop is, for F4, the number of objects used and, for P6, the number

of attributes used, The times for SET and ERASE are not listed because

there was no attempt to optimize these routines. They are currently taking

200 p seconds each on the average. The TX-2 has a memory rate of about 5 P seconds.

XIDW ACCESS TnMS (g seconds)

NcR-FMCLMSIVE IECUMSIVE

71 50 40 90 120

F2 40 4O 80 120

F3 50 50 90 130

75 50 20 90 80

FO 50 - - -

* A4 uses Fl on each object in memory
SF6 uses F1 on each attribute in memory

25

There are several interesting features in this table. The most

noticeable is the high cost of recursion. The recursive version of a routine

is needed when another F routine will be called before the first terminates.

This can be determined by the compiler and is one justification of compiling

the associative language. A hardware associative memory must also have a

way of handling multiple hits and this would probably be even more costly

relative to access time.

The other point is that the times are sufficiently small to raise

questions about competing with hardware techniques. For a computer with

list following and stacking instructions these times would be greatly reduced.

We are currently studying possible modifications to the TX-2 which would

speed up the entire system appreciably. It should be feasible to build a

system which loses a factor of about two in storage and three-to-five in

time against an associative memory of the same basic speed.

Assuming this is possible, it is debatable whether it will pay to

build hardware associative memories for general-purpose use. The most obvious

advantage of the simulated scheme is cost, but there are a number of others.

Given the current state-of-the-art, another significant advantage is size.

The most ambitious hardware systems are designed for at most 16K memories.

With the new l,000,000-word conventional memories, one could construct

associative systems with hundreds of thousands of cells.

Another advantage of simulated memories is flexibilitv. For

example, it would be trivial to add threshold searches of various sorts to

our scheme. A related feature is that one could combine some memory operations

with other processing and thus reduce the time disadvantage. Lm of the

26

purposes of the language of section I is to help discover which combinations

are the most useful.

In addition, there are some complications in the use of hardware

associative memories which are not immediately obvious. Most of these are

concerned with the multiple-hit problem. For one thing it is quite difficult

in most systems to even generate the multiple answers in order. Further, if

much processing must be done outside the associative memory the saving in the

time for the first access my be a negligible part of the total. Even in

systems with considerable jrallel processing ability the result is often

in the wrong field and must be moved. Finally, there is no direct provision

for processes involving recursion and tree-structured data. Since almost all

artificial intelligence work depends on these abilities, certain additions

to the basic scheme would be necessary.

A further point concerns the limitation of the simulated system to

three fixed fields. While it seems that a hardware memory would permit

searching on any bit pattern, this is not true in practice. The difficulty

is that the entire memory is searched in parallel and overlapping fields

would lead to false positive responses to some questions. This is just another

instance of the scheduling problem and restricts the hardware associative

memory to fixed field comparisons. One does have the ability to choose

different fixed fields for various problems, but this is not nearly as powerful

as searching on any bit pattern.

Some corroboration for our point of view may be found in Fuller L2].

In this paper he considers the applicability of an associative processor with

considerable parallel processing ability. Although he compares tomorrow's

27

associative processor with yesterday's conventional machine, he concludes

that for artificial intelligence list processing seems to be best overall.

Thus, there is some evidence that large associative memories may

be competitively simulated on conventional computers. There are still many

applications (Fuller [2]) where hardware associative memories are unquestionably

superior. One use of current interest is in page-turning memories, especially

in time-shared systems. While research in larg(, general-purpose associative

memories should also be encouraged, there seems to be no reason to wait for

it.

28

III. APPLICATIONS AND EXTENSIONS

In this section we will describe some possible uses of associative

processors and also discuss critically the results of the first two sections.

There are two distinct reasons why applications could arise from these results;

the efficiency of the processor and the convenience of the associative language.

The topics of this section will be treated in the following order: design of

the simulator, applications of both kinds, improvement to the language.

The simulated associative memory is designed to replace some of

the operations in existing list-processing languages. We will attempt to

resolve some of the known problems of associative schemes as they apply to

our model. One of the principal objections to hash-coding schemes has been

the large memory commitment. Even for smal1 problems, one had to allocate

the entire associative store. We have attacked this problem at three levels.

Since internal names are assigned sequentially, the memory used grows fairly

regularly with the size of the problem. Further improvements can be attained

by proper choice of the mask.

If the size of a problem is known in advance a mask of appropriate

size can be chosen for the transform on page 19. Assuming random inter-

connections, one has the ability to use less storage at the cost of More

overlap in a statistically predictable way. Finally, the system can be set

to automatically expand the size of the associative store (bits in the mask)

as the problem grows. This involves moving some association cells, but the

information necessary for this is contained in the cells themselves.

Another objection to the associative schemes has been the lack of

an adequate language. This problem, although not solved com.pletely here, has

29

been shown to be within reach. Aside from these basic criticisms, there are

some alternative implementations to be considered.

The first set of alternatives concern purely practical quections.

B• linking multiplicity and overlap cells on the sarme list, we incur longer

search times. The alternative would be to add a level of indirdctness for

all multiple values, leaving only overlap cells on the LTTTX chain. The

2elative cost of longer searches vs. an added level of indirectness is

problem dependent and we don't know enough about the mix to force a con-

clusion.

Another question of efficiency arises in connection with the LIMK

and tVE lists. They are now circular so that ERAZE involves twc searches

for predecessors. By using two-way lnks (ala SLIP) one could eliminate

these searches. We chose not to do so from a belief in the rarity of ERASE

statements and a feeling that storage was the critical parameter. Newell's

decision to use circular lists was based on the assumption of short lists

and does not apply here.

Some more serious design decisions were involved in the treatment

of inverses. Newell chose not to include any explicit inverse operations

both in IPL-V and in his associative scheme. We feel that the operand

flexibility of the associative language is one of its most important features

Being unable to discuss the prublem objectively, we leave it for the reader'l

consideration.

As we mentioned in section I, the logical type of attributes is a

key issue. The decision to distinguish attributes from objects was initially

made to avoid paradoxes like those which plagued mathertical logic. The

30

resulting practical advantages have included the double use of internal names,

use of fewer bits for attributes, and the ability to do some error checking.

The disadvantages arising from this decision did not appear until

we attempted to treat mixed expressions. The problem here is that each non-

associative routine would need two forms, one for objects and the other for

attributes. For example, a better version of 0 in Appendix A would have

"IF Y A Z" replaced by "IF W • A IIIt." but the latter was not available.

This issue is further clouded by the fact that it would be convenient

to allow declarations of the properties (transitivity, symmetry) of attributes

which will be effective at compile time. Finally, it is always possible to

choose an identity element 0 such that for each attribute, A, there is a

unique object, a, with A (e) = a. Thus, there is a natural correspondence

available between attributes and objects. This suggests that perhaps the

best solution is to have the first 500 (in our case) objects also be attributes

with context determining which use is intended.

We will close our discussion of the simulator with two questions

of a statistical nature. The first concerns the assumption of independence

between objects and attributes. We recall that the address of A • (0) = V

was computed by:

address = ((29 * A Q o)A2 16 -2).

Then. assuming even numbers for all object names, the relation A(0) = A' (0')

holds if and only if:

0 = 0' rr.olo 29 AD

A = A' in the middle three bits AND

(cont)

31

the lower 3 bits of A partial added to the highest

3 bits of 0 equals the same function of A' and 0'.

We assert that for normal problems this is a random occurrence among even

numbers < 215 and thus has probability 1/2 1. Including odd-numbered objects,

doubles the probability of overlap so in our system all even numbers < 4000

are used first for object names.

If the overlap probability is indeed the same as for random

addresses, we can consider using Newell's statistics to analyze our system.

However, because of the multiple values it does not directly apply. In fact,

the performance of the system depends on the expected number of multiple

values and is problem-dependent. With these reservations we note that the

performance of Newell's system did not depend appreciably on the percentage

of memory occupied.

While it is clear that many open questions remain, the associative

simulator is sufficiently well developed to be used in many current problems.

The main advantage of the associative processor is that for certain types of

data it takes less space and much less time than any known alternative scheme.

The most suitable problems are those where the data includes large numbers of

unpredictable relations between objects of significantly different kinds. Fol

neater data structures one of the list processing languages or a block-

structure language such as CORAL [7] may be a better choice.

One problem area where the data is evidently not neatly structured

is natural-language processing. Within this area, the most obvious applicatic

is in the so-called question-answering programs. Since an extensive review

of this work has been published recently by Simmons [10], we will treat it

32

only superficially. The basic problem in question-answering is the retrieval

of 'sponses to questions expressed in natural language. It is usually assumed

that the data base is also given originally in natural language. This work

has also been referred to as fact retrieval as opposed to information retrieval,

which has come to mean the recovery of pertinent documents.

Most of the recent work in question-answering has been done with

the description list processes of one of the list languages. Even in their

present rudimentary form, the results of this paper should provide a signi-

ficant improvement in the capabilities of these systems. The examples in

Appendix A are typical of some of the internal processing that might be done

in question-answering programs. The greatest difficulties in question-

answering do not, however, occur in the internal processing. The most

difficult problem, extracting the meaning of English sentence, also appears

in many other problems.

The entire question of the iremantics of natural languages has

received much attention recently. Small, computer-oriented, semantic models

have been used in the work of Jane Robinson [8] and Thompson, et al [11]

among others. A more extensive, if not immediately applicable, treatment

can be found in Katz and Postal [4]. There are, by now, several testable

theories of natural language semantics. Associative processing seems to apply

in various ways to these systems.

A basic property of the various semantic theories is close attention

to the various attributes of each word. Associative memories seem to be a

natural way to represent this information. Another possible use occurs in

the parsers used with such systems. By including a relatively shall number

33

of associative checks in a parsing program, one can attain significant improve-

ments over purely syntatic techniques. This is part of a current trend in both

natural and artificial language work to combine syntatic and semantic con-

siderations.

A further use of associative processing would be in Velping to

extend parsing beyond individual sentences. The improved processing ability

may make it feasible to record various associations (like pronoun reference)

dynamically in scanning a text. The results of Klein and Simmons [3] using

only the attribute "depends on" is very encouraging in this regard. Notice

that an application like this would have much higher frequencies of SET and

ERASE than we assumed in setting up the simulator.

There Ere other similar applications in artificial intelligence

programing which are fairly obvious and won't be me. tioned here. We will,

however, consider one possible application to cognitive psychology.

The associative language and its simulator can be thought of as

a model for certain human cognitive processes. With a proper choice of

experiments one might be able to determine the behavior of humans in tasks

similar to program runs. Among the interesting questions are the relative

difficulties of Fl F6 and the cost of recursion. Although there have

been related experiments, we know of no directly applicable results. It

should also be feasible to design an associative simulator whose parameters

could be easily changed in an attempt to model experimental results.

Whatever the inportance of these applications, they only make use

of most obvious features of associative processing. For really imaginative

applications we will need a language more powerful than any that presently exists

34

Besides the obvious extensions mentioned in section I, many improve-

ments could be made in our associative language. One very important feature

would be a flexible subroutine system. This will be somewhat difficult to

implement for our system because of the key role of bound variables. A

related development would be the addition of explicitly recursive statements.

For example, statement D of Appendix A will only extend the transitivity

of ABOVE one step. The difficulty in this case and in general is the same:

describing the criterion for stopping recursive processes. Intuitively, the

stopping condition is "when nothing new is added" but its complete expression

in the general case is not obvious.

A significant increase in expressive power could be attained by

adding elaborate declaration facilities to the associative language. One

could have a concept of "derived attribute" defined in terms of existing

attributes and objects. Such constructs could be used in all the usual ways

and several new ones. One could, for example, set an aspiration level deternxin-

ing how much time should be expended in attempting to find an answer. An

additional conmand, INCORPORATE, could be used to write explicitly all associa-

tions applying to the derived attribute. If incorporating were allowed to

depend on the number of references one could investigate problems of reinforce-

ment and concept formation in the model.

Two less important, if no less perplexing, possibilities are

quantifiers and the ordering of lists. We originally felt that logical

quantifiers (There Exists, For All) would be essential to the system. In

practice no explicit use of any quantifier other than 'For All" has occurred.

The notion of ordering elements on the multiplicity lists was not included in

35

the original version, but would be useful in certain cases. The point is

that whenever an association (e.g., lists order) can be represented directly

in the structure this representation is very efficient. However, the

associative scheme was designed to make information independent of structure.

Rather than order the multiplicity lists one could imbed AL in one of the

existing list languages.

The question of imbedding is an important part of any discussion

of extensions of AL. Any associative processing techniques, including those

described here, are efficient for only a limited set of operations. To make

full use of the abilities of associative languages, one will require sophisti-

cated methods for dealing with mixed statements. The simple examples in

Appendix A give some indication of how mixed statements arise and how they

might be expressed. The imbedding problem is complicated by a plethora of

possible host languages. One can envision problems where one or another of

these languages is clearly superior to the others. Perhaps the most reasonabli

course is to imbed the associative processes in a compiler-compiler such as

[i]. Besides allowing various imbeddings, thiC would facilitate experimentati,

with the syntax of the associative language.

The present syntax of AL models rather closely the structure of

the associative processor. This is a natural way to start, but the source

language need not have any close relation to the implementation. The present

form is easy to write, but seems difficult to read and, therefore, to debug.

There are several cth0er notations, including some from set theory, being

considered as alternatives.

Besides the difficulties peculiar to AL, there are several others

36

which apply to any associative processing scheme. Among the foremost is the

representation of n+l - tuples in a memory designed for n - tuples. For

examples, we have no direct way to represent

"the number of fingers on a hand is five".

One could break this up into triples' such as:

NUMBR FINGM - (HAND)\5

but this solution is obviously quite clumy.\ This difficulty is the price

one pays for having a uniform, tightly packed structure. Notice that the

statement could be handled by a compiler and is primrily an implementation

level problem.

Another problem of implementation concerns the representation of

numbers in an associative memory. The alternatives seem to be using an extra

bit in each object to mark absolute numbers or using numbers indirectly like

IPL-V data terms. Both alternatives are sufficiently unattractive to warrant

further work on this problem.

Despite these and other difficulties, we believe that associative

processing has an important role to play in current and future research. We

have already indicated several reasons for this belief. A further advantage

of arsociative processing is the high degree of parallelism inherent in

associative statements. For example, statement G of Appendix A applies

anywhere in memory where one object is described to be inside another.

Although the parallelism is illusory in the simulated scheme, the language

37

itself could be used effectively on a computer which actually did process in

parallel.

Most of the previous work on associative processing has been hardwai

oriented. A good review of this work through 1963 may be found in Fuller [2].

Some descriptions of more recent work may be found in references (12-15). In

addition, several of the most recently announced computers make use of very

small associative memories in their addressing schemes. An interesting statisi

cal model of associative memory operation has been described by G. Simmons [9])

The total amount of work on software aspects of associative processing is

surprisingly small. It is our hope that this paper will help stimulate researc

in this important area of information processing.

38

3-23-6150

APPENDIX A

Q A

PICTURE USED IN SAMPLE RUN

39

APPENDIX A

SET LEFT. (TRI)mCIRC. LEFT. (TRI).SQI
SET LEFT. (SQ2)-CIRC. ABOVE. (CJRC)-SQ2
SET ABOVE. (TRI)-SQ2. ABOVE. (SQ2)-SQz
SET INSIDo(SQa)-LI'NE, RUN

* HOW ARE SQ2 AND CIRC RELATED
TYPE We (SQ2)mCIRC, We (CIRC)mSQ2, RUN

LEFT. (SQZ)=CIRC
ABOVE. (CIRC) -SQ2

* WHAT IS ABOVE AND RIGHT OF CIRC
FOR ABOVE. (CIRC)-X TYPE LErT.(X)-CIRC END, RUN

LEFT. (SQ2)-CIRC

* ABOVE IS TRANSITIVE
FOR ABOVE. (X)-Y WHERE ABOVE.(Y)-Z SET ABOVE. (X)-Z END
TYPE ABOVE.(TRI)-X. RUN

ABOVE. (TRI)-SQ2
ABOVE.- (TRI) -SQz

I NSID HAS INHERITANCE
FOR INSIDo(X)-Y WHERE W.(Z)-X SET W.(Z)-Y END
TYPE ABOVE. (TRI)-X, RUN

ABOVE. (TRI)-SQ2
ABOVE. (TRI)-LINE
ABOVE. (TRI)-SQZ

FOR INSIDo(X)-Y WHERE W.(X)-Z IF YAZ SET Wo(Y).Z END
TYPE W.(LINE)-Z. RUN

ABOVE. (LINE)-SQI
LEFT. (LINE)-CIRC

SET AREA. (CIRC)-ACIRC. AREA* (SQZ)-ASQZ
SET AREA* (SQ:)-ASQ2. AREA. (TRI)-ATRI
SET AREA. (LINE)-o. RUN
1-*ATRI, 2-'ASQ1. 2-.ACIRC, 3-.ASQ29 RUN

0 WHlAT IS SMALLER THAN SQl
FOR AREA. (X)-Y IF ASOP,# TYPOS X,Y ENDO, RUN

LINE
0
TRI!
ATRI 001

* WHAT IS LARGER THAN AND ABOVE TRI
FOR ABOVE.(TRI)-X WHERE AREA. (X)-Y IF Y>ATRI TYPOS X END. RUN

SQ2
SQl

ERASE THE LINE
ERASE We (X)-LINE. W.(LINE)=.X TYPE ABOVE.(TRI)=X. RUN

ABOVE.- (TRI) =SQ2
ABOV'E.(TRI)-SQI

APPENDIX B

BACKU NORMAL FOM SYNTAX CF THE ASSCCIATIVE LANGUAGE

This appendix contains a Backus Normal Form (ENF) approximation to

the formal syntax of the Associative Language (AL) as used in this paper.

The word approximation arises from the inability of ENF to express the notion

of bound variables which is so crucial to AL. The other weaknesses of BNF

grammars [1] apply in the usual way.

The syntax presented here is of use solely in determining what

constructs are presently implemented. Not even the obvious extensions men-

ticned in Sections I and II have been included. One point that we have tried

to establish in the text is that the precise form of any additions to AL is

not well determined.

41

APPENDIX B

ASSOCIATIVE LAUE

< integer > :: = < digit > < integer > < digit >

<Mname > :: = <letter > I <name > <letter > j <name > <digit >

<object name > :: <name >

<attribute name > :: = < name >

< object variable > :: = WIXIYIZ

< attribute variable > :: = W. IX. IV Iz.

<object > :: = <object name > I <object variable > I <integer >

< attribute > :: = < attribute name > I < attribute variable >

< form > :: = < attribute > (<object >) = < object >

< closed form > is a form with all variables bound

< statement > :: = < type statement > I < erase statement > < I

< typob stat'ment > I < set statement > I < conditional >

RUNI < replacement >

< type statement >:: = IYPE < form > I < type statement >, < form >

< erase statement > = ERASE < form > < erase statement >, < form >

< typob statement > :: = TYPOB < object > I < typob statement >, < object >

< set statement > :: SET < closed form > < set statement >, < closed form >

< conditional > :: = < head > < tail >

< head > :: = FCR < form > I < head > WHRE < form > I < head > IF < relation >

< head > AND < form > I < head > APN < relation > I IF < relat:

< tail > :: = < stateme. sequence > END

< statement sequence > :: = < statem-ent > I < statement sequence >, < statement

< replacement > :: = ý. rum > - < object >

< sum > :: <ooject <j <st;n > + < cb,--ct > I < s < object >

< relation > :: = < sum > = < object > I < s,= > > < object > < sum > A <ob,

42

P=BLIOGRAPHY

1. Feldman, J., "A Formal Semantics for Computer-Oriented languages"",

Doctoral Dissertation, Carnegie Institute of Technology, 1964.

2. Fuller, R. H., "Co.atent-Addressable Memory Systems", LA, Dept. of

Engineering Report, 63-25

3. Klein, S. and R. Simmons, "Syntatic Dependence and t1he Computer

Generation of Coherent Discourse", Mechanical Translation, 1963.

4. Katz, J. and P. Postal, An Integrated Theory of Linguistic

Descriptions, Cambridge, MIT Press, 1964.

5. Newell, A., ed., Information Processing language-V Manual, Prentice

Hall, Englewood Cliffs, New Jersey, 1961.

6. Newell, A., "A Note on the Use of Scrambled Addressing for Associative

Memories", Unpublished paper, December 1962.

7. Roberts, L. G., "Graphical Communication and Control Languages ",

Second Congress on Information System Science, Hot Springs, Va., 1964.

8. Robinson, Jane,"Automatic Parsing and Fact Retrieval, Rand Memorandum

RM-4O05-PR.

9. Simmons, G. J., "A Mathematical Model for an Associative Memory",

Sandia Corporation Report, SCR-6 141, April 1963.

10. Simmons, R. F., "Answering English Questions by Computer", Comm.

ACM V8 #1, January 1965.

11. Thompson, F. B., et al, "Deacon Breadboard Summary", General Electric

Company, Santa Barbara, RM 64TMP-9.

12. Ewing, R. G. and P. M. Davies, "An Associative Processor", Proc. IFIPS

1964 Fall Joint Computer Conference.

43

13. Gall, R. G, "A Hardware-Integrated GPC/Jearch Memory", Proc. IFIPS

1964 Fall Joint Computer Conference.

14. McAteer, J. E., J. A. Capobianco and R. L. Koppel, "Associative

Memory System Implementation and Characteristics", Proc. IFIPS

1964 Fall Joint Computer Conference.

15. Raffel, J. I. and T. S. Crowther, "A Proposal for an Associative

Memory Using Magnetic Films", IEEE Trans. on Electronic Computers,

EC-13, No. 5, 1964.

44

7N-1965-13 M.I.T., Lirncol1n laboratory
Lexington T3, Massachusetts

April 1965
ýAPPýIX A

SET LEFT. (TRI)-CIRC. LEFT. (TRI)-SQ1
SET LEFT. (SQ2)-CIRC, ABOVE*(CIRC)wSQ2
SET ABOVE. (TRI)wSQ2, ABOVE. (SQ2)=SQI
SET INSIDe (SQ2)mLINE. RUN

H OW ARE SQ2 AND CIRC RELATED
TYPE W. (SQ2)wCIRC. we (CIRC)USQ2, RUN

LEFT.- (SQ2) -C IRC
ABOVE. (CIRC)-SQ2

* WHAT IS ABOVE AND RIGHT OF CIRC
FOR ABOVE. (CIRC)-X TYPE LEFT. (X)mCIRC END, RUN

LEFT. (SQ2)=CIRC

* ABOVE IS TRANSITIVE
FOR ABOVE.(X)inY WHERE ABOVE. (v)-Z SET ABOVE. (X)-Z END
TYPE ABOVE.(TRI)uX, RUN

ABOVE. (TRI).SQ2
ABOVE.- (TR1) -SQJ

* INSID HAS INHERITANCE
FOR INSIDe (X)-Y WHERE W. (Z)-X SET W. (Z)-Y END
TYPE ABOVE. (TRI)mX, RUN

ABOVE.a (TR1) -SQ2
ABOVE. (TRI)-LINE
ABOVE.- (TR1) -SQ1

FOR INSIDe (X)-Y WHERE W.(X)-Z IF YAZ SET W.(Y)-Z END
TYPE We (L INE) -Z . Rt'N

ABOVE. (LINE) -SQl
LEFT. (LINE)-CIRC

SET AREA. (CIRC)-ACIRC. AREA. (SQZ)-ASQI
SET AREA. (SQ2)-ASQ2, AREA. (TRI)-ATRI
SET AREA. (LINE)=0. RUN
J--*ATRI. 2-.ASQZ. 2-.ACIRC. 3-.ASQ2, RUN

* WHAT IS SMALLER THAN SQJ
FOR AREA. (X)mv IF ASQI>Y TYPOB X.Y END. RUN

LINE
O @000
TRI
ATRIDo

* WHAT IS LARGER THAN AND ABOVE TRI

FOR ABOVE-(TRI).X WHERE AREA. (X)-Y IF Y>ATRI TYPOS X END. RUN

SQ I

ERASE THE LINE
ERASE Wo(X)-LINE. W.(LINE)wX, TYPE ABOVE.(TRI)-X. RUN

ABOVE* (TR1) -SQ2
ABOVE. (TRI)-SQ1

45

